Anisotropic Thermal Expansion of Arsenic

R. R. PAWAR

Physics Department, Nagarjunasagar Engineering College, Hyderabad-28, India

V. T. DESHPANDE Physics Department, College of Science, Osmania University, Hyderabad-7, India.

The lattice parameters of arsenic have been determined at various temperatures between 28 and 286° C, using 19 cm diameter, high temperature camera. The a-parameter is observed to increase between 28 and 200° C and thereafter it decreases up to 286° C. The c-parameter is found to increase parabolically throughout the range of temperature. The mean values of thermal expansion coefficients along, and perpendicular to, the principal axis between 28 and 200° C are 44.3×10^{-6} /° C and 3.1×10^{-6} /° C respectively.

1. Introduction

Two reports, one Klemm *et al* [1] and the other by Taylor *et al* [2], on the values of the lattice parameters of arsenic at different temperatures are available in the literature. There is, however, some discrepancy in the nature of the temperature variation of the a-parameter as given in these two reports. To resolve this, a redetermination of the lattice parameters and the coefficients of thermal expansion at different temperatures has been undertaken. This note presents the results of the study along with a comparison with earlier data.

2. Experimental and Results

A pure sample supplied by Thomas Tyrer and Co was used to obtain the X-ray powder photographs at the various temperatures. The experimental technique and the method of evaluating the lattice parameters was the same as described earlier [3]. The reflections employed were $(30.6)\alpha_1\alpha_2$, $(31.2)\alpha_1\alpha_2$, $(13.4)\alpha_1\alpha_2$, $(40.2)\alpha_1\alpha_2$ and $(30.9)\alpha_1\alpha_2$. These were recorded at approximate Bragg angles of 56°, 60°, 64°, 73° and 75° respectively with CuK α . In table I the values of the lattice parameters and the axial ratio at different temperatures are given.

The a-t plot given in fig. 1 shows that the aparameter increases slowly with temperature, reaches a maximum value at about 200° C and then falls gradually. To evaluate the expansion coefficient in this direction, a straight line was © 1970 Chapman and Hall Ltd.

TABLE	I Values of the lattice parameters of arsenic at
	different temperatures

Temp. °C	"a" Å	"c" Å	c/a			
28	3.7585	10.5564	2.8087			
70	3.7591	10.5713	2.8122			
155	3.7599	10.6052	2.8206			
200	3.7595	10.6368	2,8293			
244	3.7601	10.6583	2.8346			
286	3.7588	10.6783	2.8409			

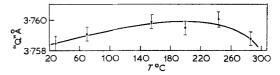


Figure 1 Temperature variation of a-parameter.

drawn using all the experimental points below 200°C and the slope of this line was determined. This gave the average coefficient, $\bar{a}_{a} = 3.1 \times 10^{-6}$ °C.

The variation of the c-parameter with temperature, shown in fig. 2, is non-linear and hence a quadratic fitted to these points by the method of least-squares gave the following equation.

$$c_t = 10.5522 + 369.93 imes 10^{-6} (t - 20) + 423.30 imes 10^{-9} (t - 20)^2.$$

Here c and t are expressed in Å and °C respectively. The corresponding equation for the 1061

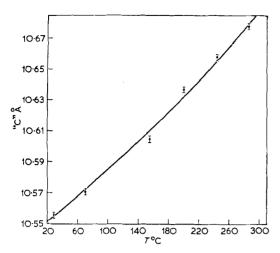


Figure 2 Temperature variation of c-parameter.

coefficient of thermal expansion, obtained by differentiation of c_i with respect to temperature, is

 $\alpha_c = (33.45 \times 10^{-6} + 80.2 \times 10^{-6}t) \,^{\circ}\text{C}$

The error in the coefficients was estimated to be less than 5%.

Bridgman [4] has reported the expansion coefficients along, and perpendicular to, the c-direction at 6° C. The present values of coefficients are extrapolated to the same temperature and compared in table II. Klemm *et al* studied

TABLE II Results of the thermal expansion coefficients of arsenic obtained by different workers

Author	α _c ×10 ⁶ /°C	$C \alpha_{\rm e} \times 10^6/^{\circ} \rm C$	<u>}</u>	Temp. °C
Bridgman	3.0	43.0	At	6
Klemm et al	2.6	47.4	Between	0-200
Taylor et al	0.0	47.2	Between	20-400
Present work	3.1	33.9	At	б
	3.1	44.3	Between	20-200

the variation of the lattice parameters with temperature. They also noticed a reversal in the a-parameter plot at about the same temperature (230° C) . The mean expansion coefficients evaluated from their graph, compared with the present values in table II are in good agreement.

Recently, Taylor *et al* have studied the lattice parameters of arsenic at different temperatures. The mean expansion coefficient along the cdirection, between 22 and 400° C, as shown in table II, is in good agreement with the present value. However, the coefficient of expansion in the a-direction obtained by them as zero and does not agree with the present result or any of the earlier data as given in table II.

References

- 1. W. KLEMM, H. SPITZER, and H. NIERMAN, Angew. Chem. 72 (1960) 985.
- J. B. TAYLOR, S. L. BENETTE, and R. D. HEYDING, J. Phys. and Chem. Solids 26 (1965) 69.
- 3. V. T. DESHPANDE and RAM RAO PAWAR, Current Sci. 31 (1962) 497.
- 4. P. W. BRIDGMAN, Proc. Amer. Acad. Arts. Sci. 67 (1932) 29.

Received 24 February and accepted 7 September 1970.